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The Willingness to Pay for a Cooler Day: Evidence 
from 50 Years of Major League Baseball Games†

By Kevin Kuruc, Melissa LoPalo, and Sean O’Connor*

The  climate economy literature has documented adverse effects of 
extreme temperatures on  well-being through mechanisms such as mor-
tality, productivity, and conflict. Impacts due simply to discomfort are 
less well understood. This paper investigates individuals’ valuations 
of weather using a revealed preference approach. We first quantify 
the decline in attendance at Major League Baseball games on hot 
and cold days. Leveraging this finding coupled with the  historically 
informed assumption of a horizontal supply curve, we infer a mone-
tized estimate of the disutility of extreme temperatures. We estimate a 
$1.53 utility loss per hour of exposure to high temperatures, implying 
 nontrivial aggregate welfare effects. (JEL D12, I31, L83, Q54, Z21)

A large literature in economics documents the impacts of extreme temperature on 
 well-being: more frequent episodes of high heat are expected to harm human 

health (e.g., Deschênes and Moretti 2009; Barreca 2012), make workers less pro-
ductive (e.g., Adhvaryu, Kala and Nyshadham 2019; Zhang 2018), and lower the 
overall GDP of economies (e.g., Burke 2015; Hsiang 2010), for example. These 
impacts entail large losses of individual  well-being. One impact that is relatively 
less well documented is loss of utility due to the simple fact that extreme tempera-
tures are unpleasant. While utility losses from this discomfort may be relatively 
small at the individual level, on the aggregate level they could add up to large losses 
in welfare due to their universality.

In this paper, we identify the causal effects of weather on individuals’ engage-
ment in outdoor activities in a context where we can isolate and infer a monetized 
value for the disutility of extreme temperatures. Major League Baseball (MLB) 
games provide an ideal setting: attendance has been scrupulously documented for 
over a century, creating a rich dataset of over 80,000 games in our sample period 
with substantial variation in  game day weather and local climate. We use variation 
in hourly temperature at game time to identify the impacts of weather on attendance 
at games between 1950 and 2000, controlling for a variety of observable character-
istics of the game,  stadium-specific seasonality in attendance, and time fixed effects. 

* Kuruc: University of Texas at Austin, University of Oklahoma (email: kevinkuruc@utexas.edu); LoPalo: 
Montana State University (email: melissa.lopalo@montana.edu); O’Connor: Federal Housing Finance Agency 
(email: seantjoconnor@gmail.com). Benjamin Olken was coeditor for this article. This article was written by 
O’Connor in his private capacity. No official support or endorsement by the Federal Housing Finance Agency is 
intended or should be inferred.

† Go to https://doi.org/10.1257/app.20220606 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.

https://doi.org/10.1257/app.20220606
mailto:kevinkuruc@utexas.edu
mailto:melissa.lopalo@montana.edu
mailto:seantjoconnor@gmail.com
https://doi.org/10.1257/app.20220606


VOL. 17 NO. 1 127KURUC ET AL: THE WILLLINGNESS TO PAY FOR A COOLER DAY

The results indicate significant effects of both very hot and very cold days, with 
attendance declining by 16 percent at temperatures over 95°F.

We next calculate the decline in ticket prices that would reverse the decline in 
attendance on very hot or cold days to estimate the change in willingness to pay 
for baseball. To do this, we exploit the fixed pricing behavior of MLB teams that 
prevailed through the twentieth century. Only over the last couple of decades has 
it become common for teams to adjust ticket prices for a given game according to 
expected or realized demand. Since fixed prices imply a horizontal supply curve, 
the decline in attendance on hot or cold days represents a leftward demand shift. 
Given the  well-documented fact that MLB teams have historically priced tickets 
on the inelastic region of demand (Krautmann and Berri 2007), we assume a price 
elasticity of demand of 0.7, although we show the results for a range of elasticity 
assumptions. This implies that a 22.9  percent decrease in price would offset the 
16 percent decline in attendance when the temperature is over 95°F. The average of 
 inflation-adjusted MLB ticket prices in our sample period is approximately $18,1 
so the marginal consumer’s willingness to pay for a ticket drops by roughly $4.11 
at temperatures over 95°F. Using this same method for unpleasantly cold days gen-
erates a slightly larger $5.17–$6.55 for games with temperatures under 55°F. This 
exercise provides information about individuals’ preferences over weather, which 
encompass both the simple disutility from the discomfort of extreme temperatures, 
as well as any concern the individuals may have about health consequences from 
exposure.

We complement this first approach with an alternative method for estimating how 
willingness to pay for baseball varies with the weather. During the 2021 season, 
we scraped  game-level ticket price data from SeatGeek, a secondary market for 
tickets. Estimating the impacts of  game-time weather directly on the prices of ticket 
listings on SeatGeek, we find that prices fall by 8.4 percent ($1.51) at temperatures 
over 90°F. The reason we use a less extreme temperature threshold—above 90°F 
rather than 95°F—is that there are too few games with temperatures above 95°F in 
the  one-year sample. However, running the same regression, using the same stadi-
ums, on our longer attendance data (and imputing price effects with our elasticity 
assumption) generates an estimate that is quantitatively similar. These results help 
validate our main results and generalize the findings to more recent games.

Translating these declines in willingness to pay for baseball to a monetized disut-
ility of extreme temperature requires a few additional assumptions. In particular, the 
availability of alternative outdoor activities in general creates a wedge between the 
price declines necessary to reverse the attendance declines on hot and cold days and 
the monetized disutility we hope to estimate. We show that as long as individuals 
are choosing between baseball games, indoor activities, and other outdoor activities 
that become absolutely less enjoyable in the heat or cold, the willingness to pay 
estimate will be weakly smaller (in absolute value) than the disutility of extreme 
temperature. An exception would occur if individuals have the option to engage in 
an outdoor activity that becomes more enjoyable in the heat (or cold) relative to 

1 Source: https://eh.net/encyclopedia/the-economic-history-of-major-league-baseball/. This is in 2020 dollars.

https://eh.net/encyclopedia/the-economic-history-of-major-league-baseball/
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mild weather. In these cases, the decline in willingness to pay for baseball would 
be partially attributable to the availability of a better outdoor option. However, we 
show that attendance holds steady at baseball games in covered stadiums across all 
temperatures, indicating that declines in baseball attendance at outdoor stadiums are 
unlikely to be driven by an increasing desirability of alternative outdoor activities.

In order to translate our estimates to a  per-hour disutility of extreme temperature 
exposure, we note that the average game we study lasts 161 minutes, so our $4.11 
estimate for games over 95°F implies an hourly disutility of $1.53. For exposure to 
under 45°F the corresponding figure is $1.93. To understand the aggregate impli-
cations of these numbers, consider that individuals in the US spend approximately 
30 minutes outside on the types of days that tend to produce temperatures in excess 
of 95°F.2 Applying our disutility estimate to these 30 minutes means that each indi-
vidual suffers welfare losses of $0.77 per day, on average. The increase in such 
days under a business-as-usual climate change scenario will then result in additional 
annual total losses from very hot days on the order of $2.31 billion by  2080–2090. 
This number does not entail a significant revision to our understanding of the social 
cost of carbon, especially since the reduction of cold days in these scenarios provide 
benefits not counted in that $2.31 billion. However, the annual reduction in value 
from increased hot days is on par with the largest weather disasters experienced on 
a  year-to-year basis, and so is not in general insignificant.

This paper contributes to the prior literature in several ways. First, we contribute 
to the literature on valuation of  nonmarket climate amenities by exploiting unique 
aspects of the market for baseball tickets. Our paper is the first to provide an esti-
mate of the valuation of mild weather based on consumer choice in a market setting, 
in a sufficient statistics framework that does not require strong structural assump-
tions. Settings where it is possible to use  well-identified estimates of behavioral 
change to monetize revealed preferences are rare, in part because climate is closely 
tied to consumption of  non-market goods and leisure which are themselves difficult 
to value. Recent work by Chan and Wichman (2022) derives a valuation method for 
the effects of climate on consumer surplus for any given activity, based on changes 
in participation in that activity and baseline consumer surplus. Our approach esti-
mates the direct effect of temperature on utility through  well-documented market 
behavior rather than relying on travel cost methods to obtain consumer surplus. A 
second advantage of the setting here is that the market for MLB tickets is better doc-
umented and studied than nearly any other form of outdoor recreation, allowing for 
more credible empirical evidence of behavior change and a more robust literature 
from which to draw external assumptions.

More generally, previous literature has aimed to identify individuals’ monetary 
valuation of climate through several methods. One method is to identify prefer-
ences over  long-term climate by observing individuals’ choices over where to live 
(Albouy et  al. 2016; Sinha, Caulkins and  Cropper 2018). These papers estimate 
these preferences using  cross-sectional variation in climate; however, correlation 

2 In our sample, games at over 95°F tend to occur on days with an average temperature between 85°F and 89.5°F 
(this is the range between the  twenty-fifth and  seventy-fifth percentile of daily average temperature for game times 
in this bin). The estimate of time spent outdoors on these days is from the American Time Use Survey.
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between climate and other  place-specific characteristics may bias these estimates. A 
second method is to use survey data on  self-reported happiness or life satisfaction 
to examine the impacts of heat on utility (Feddersen, Metcalfe, and Wooden 2012; 
Denissen et al. 2008). Finally, Baylis (2020) finds evidence that expressed senti-
ment on Twitter becomes more negative, accompanied by an increase in profanities. 
Baylis then compares the impacts of heat on Twitter sentiment with the impacts 
of changes in quarterly local wages to back out a monetary valuation of tempera-
ture, finding that individuals would be willing to pay approximately $5 to $12 to 
exchange a  30–35°C day with a  20–25°C day.3

In addition, we add to the literature documenting changes in individuals’ allo-
cation of time according to the weather. Graff Zivin and Neidell (2014) find that 
individuals in the United States tend to reallocate leisure time indoors on hot 
days, indicating that outdoor leisure becomes relatively less valuable in the heat. 
Similarly, Connolly (2008) finds that rainy weather lowers the opportunity cost of 
labor by making leisure time less attractive, causing individuals to increase their 
labor supply. More recently, Chan and Wichman (2020) document the change in 
time spent cycling according to the weather, leveraging a relatively active outdoor 
leisure activity.4 We contribute further evidence that individuals prefer to allocate 
time away from outdoor leisure on hot (and cold) days.

The rest of the paper proceeds as follows. Section I provides background on MLB 
attendance, discussing the history of determinants of what fans pay both at the box 
office and on secondary markets such as StubHub and SeatGeek. Section II describes 
the data we use on game attendance and game day weather. Section III introduces 
our regression framework, which uses  stadium-specific seasonally unusual weather 
variation to causally identify the nonlinear impacts of temperature on game atten-
dance. Section  IV presents the results of the analysis of weather and attendance. 
Section  V investigates whether the effects vary significantly by usual climate or 
stadium type. Section VI translates the main results on attendance to an estimate 
of the disutility of extreme temperatures, and Section VII presents the results of 
a second exercise examining changes in SeatGeek ticket prices according to the 
weather. Section VIII discusses the implications of our estimates for hourly disutil-
ity and aggregate welfare losses on days with extreme temperatures, and Section IX 
concludes.

I. Background: The Market for Baseball Tickets

This section describes the market for baseball tickets, focusing on the determi-
nants of game attendance and secondary market prices and providing the foundation 
for the structural assumptions made in Section VIA.

3 In addition, there is a related literature that seeks to estimate willingness to pay to avoid the health impacts of 
pollution by valuing the sickness caused by air pollution in a value of statistical life framework and/or by estimating 
the willingness to pay for  exposure-reducing technologies (see, for example, Deschênes, Greenstone, and Shapiro 
2017; Ito and Zhang 2020). Staying inside on a hot day may be partially thought of as a defensive instrument against 
health impacts of high heat, but the willingness to pay parameter we estimate encompasses the pure utility impacts 
of high heat as well, aside from the health impacts.

4 Chan and Wichman (2020) find more adjustments on cold days, leading them to conclude that climate change 
will, on net, increase outdoor recreation. Like this study, they do find a negative adjustment on very hot days as well.
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A. Attendance and the Primary Market for Tickets

Historically, the majority of fans bought tickets in the primary market, directly 
from teams. Teams sold tickets at a fixed price: prices varied only according to seat 
location and were otherwise kept constant throughout the season.5 Furthermore, 
the sports literature has consistently found that teams have historically priced their 
tickets in the inelastic region of demand, below price levels that would be expected 
to maximize revenues.6 Under this pricing model, observed variation in attendance 
from game to game is thus driven by  nonprice-related  demand-side factors.

In recent years, each MLB team has moved to a variable pricing model and later 
adopted dynamic pricing models for tickets. Teams using variable pricing still set 
prices before the season begins, but they vary prices by additional  game-level char-
acteristics that predictably determine demand, such as day of the week, season, and 
popularity of the rival team. Teams using dynamic pricing, on the other hand, vary 
prices over time within the season according to observed changes in demand. Courty 
and Davey (2020) documents year of adoption of variable and dynamic pricing for 
each MLB team, showing that most teams had adopted dynamic pricing by 2016, 
but none had before 2009. The earliest adopter of variable pricing was the Colorado 
Rockies in 1997. By definition, we would expect dynamic pricing to move pricing 
into a more elastic region of demand, which affects the assumptions of our will-
ingness to pay exercise. Partially due to this concern, in our main specification we 
restrict our sample to  1950–2000, when fixed pricing was dominant.

B. The Secondary Market for Tickets

Secondary sales have always been part of the market for MLB tickets: histori-
cally, scalpers purchased tickets in advance, especially for popular games, and then 
sold them on game day in front of the stadium. Scalpers attracted public distaste by 
creating unwanted competition for tickets in the primary market and selling them at 
exorbitant prices (Budish and Bhave 2023). In the past, sports leagues aggressively 
moved to limit ticket scalping, even leading to  anti-scalping state laws in many 
places, albeit with limited effectiveness (Drayer 2011).

The market for secondary sales of baseball tickets has exploded in recent years 
with the creation of websites such as Ticketmaster (on the Internet starting 1996), 
StubHub (2000), and SeatGeek (2009).7 These websites typically allow sellers to 
upload tickets in electronic format and have proprietary algorithms that determine a 
recommended price for the listing. Sellers then have the ability to set their own price 

5 For example, season ticket holders and other fans were mailed  preordered tickets with fixed prices printed on 
them before the season began.

6 The sports literature has proposed several explanations for this. One explaination is that cheap tickets may 
draw fans through the gates to buy  high-margin concessions goods (Krautmann and Berri 2007). Another is that 
inexpensive ticket prices may “hook” new loyal baseball fans (Ahn and Lee 2007). Fort (2004b) shows evidence 
that teams may keep ticket prices low due to the incentive to attract public subsidies. Overall, the literature suggests 
that pricing in the inelastic region may not be inconsistent with profit maximization (Fort 2004a).

7 Teams for the most part have also embraced the secondary market. In 2007, MLB formally signed an agree-
ment with StubHub, making the website an official outlet for ticket sales complete with the use of official team 
logos. MLB in return shares in the revenue from sales of tickets on StubHub.
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or take the recommended price, and they can change their listing price as desired. 
Stubhub, for example, allows sellers to set up a notification that alerts them if market 
conditions have changed such that their price now falls outside of a recommended 
range.

Sellers on these websites are a mixture of casual fans, season pass holders, and 
professional ticket brokers. An estimate from one major primary ticket seller sug-
gests that about 30 percent of major league sports tickets are sold to brokers in the 
primary market (GAO 2018).8 On the other hand, using data from  e-Bay, Sweeting 
(2012) shows that 88 percent of MLB ticket sellers list only a single set of tickets 
to a particular game, suggesting that fans (especially season ticket holders) make 
up the majority of the market. Prices on secondary markets are typically signifi-
cantly higher than primary market prices: Sweeting (2012) finds that tickets are 
listed on StubHub at about twice their face value, on average. These prices represent 
a much more elastic region of the demand curve for baseball tickets (Diehl, Maxcy, 
and Drayer 2015). The same paper shows evidence that prices are similar across 
multiple secondary market sites, suggesting that they can be thought of as part of 
the same overall market. With fully dynamic prices on both the primary and second 
markets in recent years, and a fixed supply of seats in a stadium, these facts indicate 
that secondary market prices are very likely to track consumer willingness to pay 
for baseball.

Another major change in this market over the last 30 years has been the construc-
tion of new,  well-equipped, and often smaller stadiums. Combined with the ease of 
buying tickets online, this trend has meant that stadiums have steadily filled up over 
the past few decades. Online Appendix Figure A1 shows a marked increase in aver-
age monthly attendance as a percent of capacity across all teams since 1990.9 We 
would expect fuller stadiums and a more robust secondary market for tickets to limit 
our ability to observe an impact of weather on attendance at MLB games, which we 
discuss further below.

II. Data

A. MLB Attendance Data

Our data source for MLB game attendance and game characteristics is www.ret-
rosheet.org, following Neidell (2009).10 Retrosheet has collected game records from 
1871 through the present. We compile attendance records from every game for each 

8 With the use of software bots, brokers have a significant advantage over fans in purchasing  low-price tickets 
on the primary market, and this  rent-seeking behavior significantly eats away at the efficiency gains of secondary 
markets (Leslie and Sorensen 2014).

9 Note that one point shows average attendance over 100 percent of stadium capacity. This can happen because 
many stadiums sell standing room only tickets, which they count as exceeding their seating capacity. This is rare in 
practice, and should be rarer still for the monthly averages in this figure. That particular point is March 2014, when 
teams’ opening days fell on March 30 and 31, so that monthly average is really just an opening weekend average. 
This  counter-intuitive capacity definition will not cause any issues for our analysis as we estimate raw attendance 
levels, not as a percent of reported capacity.

10 Neidell (2009) uses Retrosheet data to analyze the effects of smog alerts on attendance. The context of MLB 
games has also been used to estimate the elasticity of labor supply, focusing on stadium vendors (Oettinger 1999).

http://www.retrosheet.org
http://www.retrosheet.org
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stadium in the United States from  1950–2000.  Pre-1950 games are dropped because 
of the sporadic availability of weather data, and  post-2000 games are dropped to 
eliminate the influence of secondary markets and more sophisticated pricing strate-
gies by teams, which arose around the turn of the century. Before 2000, we rely on 
the fixed pricing behavior of teams to translate attendance declines into a monetary 
estimate of the disutility of extreme temperature under minimal assumptions. In all, 
this provides a sample of over 80,000 games.

The source of attendance records tends to vary by league in our sample period, 
with the National League reporting turnstile attendance (so no shows do not count) 
and the American League reporting ticket sales as attendance (so that no shows 
were included as attending). When the two leagues merged in the early 1990’s, the 
National League switched to reporting ticket sales (Shaikin 2005). Theoretically, 
this could affect our results to the extent that individuals  mis-forecast weather when 
buying their tickets, decide to not go upon learning of unpleasant weather, and are 
unable to give away or sell their ticket. Using ticket sales to measure attendance 
could bias our estimates toward zero in these cases, since no shows generate an 
attendance decline not captured in ticket sales. We discuss this further below. Online 
Appendix Table A1 provides information on each team included in the sample.11 
The teams’ home stadiums are well distributed throughout the United States, and 
cool, temperate, and hot climates are well represented, as shown in online Appendix 
Figure A2. In addition to attendance records, Retrosheet reports  game-level infor-
mation on day of the week, time of day, scores, and detailed  play-by-play records 
of the progression of the game. This information allows us to control for a battery 
of  game-level observable characteristics to improve the precision of our estimates. 
Retrosheet also reports game start time in the event files, but in practice this infor-
mation is often missing. Therefore, we impute game start time in these cases to 
match with hourly weather. Specifically, we assign a start time of 1pm to afternoon 
games and 7pm to evening games without a start time. In a few cases, we have 
 doubleheaders where both games took place in the same afternoon and are missing 
start times; in these instances, we assign a start time of 1pm to the first game and 4pm 
to the second game.

Table  1 reports summary statistics on  game-level characteristics. On average, 
around 20,670 people attend an American League game and 22,130 people attend a 
National League game.12 With average stadium capacity close to 50,000, this implies 
that stadiums are on average less than half full. The existence of substantial leftover 
capacity in the average baseball game allows for variation in attendance based on 
 game-day factors such as temperature. The average game lasts about  159–163 min-
utes, and nearly two out of three take place in the evening, as opposed to in the after-
noon. In a small percentage of cases, more than one game takes place in the same 
stadium on the same day, usually due to postponement of a previous game.

11 We restrict our attention to only American MLB teams, since some of the weather data is only available for 
the contiguous United States. However, the Toronto Blue Jays and Montreal Expos do appear in our sample as 
visiting teams.

12 These leagues have historically differed slightly in the rules they use to govern gameplay, but are both part of 
the umbrella organization of Major League Baseball and play against one another throughout the season.
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A number of MLB teams play in covered stadiums, with some transitioning to 
such stadiums in recent years. These stadiums are either permanently enclosed 
(domed) or are temporally covered for bad weather (including hot days) using a 
retractable roof.13 In our main specification, we drop all domed stadiums and sta-
diums with retractable roofs from the sample. We then later use these stadiums in 
a placebo test—we investigate the impacts of weather on baseball attendance in 
settings where baseball games are held in indoor or  climate-controlled stadiums. 
This eliminates the influence of exposure to the weather on the decision to go to a 
baseball game.

B. Weather Data

We use hourly weather station data downloaded from the National Oceanic and 
Atmospheric Administration (NOAA)’s Integrated Surface Database (ISD). We 
assign temperature readings for each game based on the average of station readings 
within 50km of the stadium, weighted by inverse distance. For each station, we 
take the average of the three hourly readings beginning with the starting hour of 
each game, to approximate average weather during the duration of the game. One 
concern with using weather station data is that entry and exit of stations from the 
database during our sample period may cause variation in our measure of tempera-
ture for each stadium (Dell, Jones, and Olken 2014). To circumvent this, we only 
use readings from stations that reported continuously throughout the period that 
each stadium is operational.14 Figure 1 displays summary statistics of the merged 
 MLB-weather data, showing the number of MLB games in our sample for which 

13 The home stadiums of the Arizona Diamondbacks, Seattle Mariners, Texas Rangers, Houston Astros, 
Milwaukee Brewers, and Miami Marlins all now have retractable roofs, and were built in the past few decades.

14 Specifically, we drop any station that does not report every year between the time each stadium opened and 
closed. Additionally, we drop any station that is missing more than 5 percent of all  three hourly readings in the time 
period that the stadium was open. This leaves a small number of missing  station-game observations. We follow 
Park et al. (2020) in filling in these missing observations with the nearest station’s reading. However, our results are 
invariant to dropping these instead. More details about the construction of our weather data can be found in online 
Appendix B.

Table 1—Summary Statistics: Game and Stadium Metrics

American League National League

Mean SD N Mean SD N

Attendance (thousands) 20.67 12.66 44,242 22.13 12.96 42,462
Capacity (thousands) 49.73 11.62 44,236 49.10 10.55 42,439
Percent full 0.43 0.27 44,236 0.45 0.25 42,439
Stadium age (years)a 30.45 24.80 44,236 24.39 19.76 42,439
Game duration (minutes) 163.26 28.62 44,242 159.30 27.85 42,462
Night 0.64 0.48 44,242 0.62 0.49 42,462
Doubleheaderb 0.08 0.26 44,242 0.07 0.25 42,462

Note: This table presents summary statistics for stadium and  game-related control variables 
by league.

a  Calculated as the difference between the year a game takes place and the first year of sta-
dium operation.

b  Share of games that were played on days when more than one game occurred, usually due 
to prior inclement weather causing a game postponement.
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 game-time temperature fell into each of the 12  five-degree bins we use for our 
regression analysis. On average,  game-time temperatures are warm but relatively 
mild (the baseball season runs from April through September), with  70–75°F being 
the most common temperature range. However, we observe thousands of games that 
occurred in weather over 90°F or under 50°F.

All MLB games in the contiguous United States occur close to a reporting weather 
station, but many of the stations have historically not consistently reported hourly, 
or  sub-daily precipitation.15 Therefore, we source our precipitation data from the 
PRISM weather dataset from  1950–2000.16 These data files give weather informa-
tion on a 2.5 × 2.5 mile gridded basis for the contiguous United States. The data are 
adjusted by Wolfram Schlenker to provide a balanced panel of weather station data: 
missing daily station readings are filled in by the  distance-weighted average of the 
cumulative density function of surrounding stations. We merge this precipitation 
information with baseball attendance data by taking the average of the daily weather 
readings from the four surrounding weather gridpoints for each stadium, weighted 
by inverse distance between each gridpoint and the stadium. In a robustness check, 
we use daily average temperature data derived from the same source, calculated as 
the average of minimum and maximum temperature for each gridpoint.

Figure 2 displays average weekly game attendance for each of five major teams 
as it progresses throughout the season after opening day. Attendance is normalized 

15 Precipitation is an “additional" reporting field in the ISD, not a mandatory one.
16 The data can be downloaded from Wolfram Schlenker’s website, at http://www.columbia.edu/ws2162/links.

html.

Figure 1. Number of MLB Games in Each  Five-Degree Temperature Bin,  1950–2000 (°F)

Note: This figure displays the count of MLB games that had  game-time temperatures (the average of hourly tem-
perature readings for the three hours after the start of the game) in each of the 12 bins we use in our regression 
analysis.
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to each team’s average attendance in the thirteenth and fourteenth week of the year, 
when opening day usually occurs, to net out the influence of stadium capacity and 
team popularity. There is a pronounced peak in attendance around the  mid-summer 
months for all five teams, but attendance falls much more in the August heat in the 
home stadiums of the Texas Rangers and the Atlanta Braves. This figure provides 
suggestive evidence that weather may have a quantitatively important impact on 
attendance at MLB games.

III. Empirical Strategy

We estimate the impacts of temperature on attendance at baseball games using a 
 semiparametric specification. This flexibly identifies the effect of  game-time tem-
perature falling into a certain bin on game day attendance, relative to a reference bin 
of  70–75°F. We estimate the following equation:

(1)   y isdmv   =  ∑ 
j
  

 

     β j   ⋅ Exposur e sdm   ( T j  )  +  θ sm   +  λ my   + η preci p sdm   + ν  X isdmv   

 +  ϕ v   +  ϵ isdmv   ,

where   y isdmv    is logged total attendance at game  i  at stadium  s  on date  d  in month  
m  against visiting team  v .   β j    is the coefficient of interest and gives the effect of 
 game-time temperature falling in bin  j  on attendance, relative to the reference bin 
of  70–75°F. We estimate the impact of temperature falling into 11   five-degree 

Figure 2. Attendance Slump in August Larger in Hot Places

Note: This figure displays average weekly attendance as a percent of attendance in the thirteenth and fourteenth 
week of the year (when opening day usually falls) for home games for five major teams over the course of the aver-
age season from 1950 to 2019.
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bins:  <  45°F,  45–50°F,  50–55°F,  55–60°F,  60–65°F,  70–75°F,  75–80°F,  80–85°F, 
 85–90°F,  90–95°F, and  >  95°F.17 The omitted bin is  70–75°F, so the thought exper-
iment is to compare the impact of  game-time temperature falling into the bin of 
interest with the impact of temperature instead falling between  70–75°F.   θ sm    are 
stadium by month of year fixed effects (58  stadiums by 12  calendar months), 
which net out the average popularity of games at a team’s home location at a cer-
tain time of year and therefore control for usual  place-specific monthly weather 
conditions. Additionally, controlling for stadium rather than home team fixed 
effects nets out changes in attendance within teams across stadiums due to dif-
ferences in capacity or stadium amenities.   λ my    are month-by-year fixed effects, 
which net out any universal  time-varying determinants of baseball attendance.  
 preci p sdm    refers to a linear control for daily total precipitation on game day.18  X isdmv    are 
controls for observable characteristics of a particular game that are likely important 
determinants of attendance. In our main specification, we control for  day-of-week 
fixed effects, the share of the home team’s last 100 games that it won, and whether 
the game was an afternoon or evening game, which is an important control because 
afternoon games will tend to be both hotter and less popular.19 Finally   ϕ v    are fixed 
effects for the visiting team, netting out variation in game attendance due to the pop-
ularity of the rival team. Standard errors are clustered at the stadium level.

A. Identifying Assumption

Our identifying assumption is that any unobserved determinants of attendance at 
a given MLB game are uncorrelated with variation in game-time weather after con-
trolling for stadium by month and month by year fixed effects. That is, instances of 
weather that are unusual for a certain stadium in a certain month are not correlated 
with attendance for any reason other than the direct effects of weather on the enjoy-
ability of attending a baseball game.

Our identifying assumption would not be violated, for instance, by attendance 
rising in later months in the season as excitement for playoffs builds in a way that 
is correlated with temperature falling in early fall. It would, however, be violated if 
the expected quality of the game were to be affected by the weather. For instance, 
if players’ performance is affected by unexpected heat, and fans change their atten-
dance behavior in anticipation of this, this would violate our identifying assump-
tions. However, as we show in Section IV, we don’t see a significant negative impact 
of unexpected heat on indicators of game quality such as the number of runs in a 
game.

17 We code each bin to include the upper bound in case of an exact match; for example, ( 45–50], ( 50–55], etc.
18 Prior work has found that attendance at baseball games falls on rainy days, but that attendance subsequently 

bounces back, suggesting the presence of  habit-formation in baseball attendance (Ge, Humphreys, and Zhou 2020).
19 If a team moved cities and changed names, we consider the team in the new city to be a new team. In 

our sample period, for example, the Kansas City Athletics moved to Oakland and became the Oakland Athletics, 
the Washington Senators moved to Minnesota and became the Minnesota Twins, and the Seattle Pilots moved to 
Milwaukee and became the Milwaukee Brewers. If a team changed names but stayed in the same city, we consider 
the teams to be the same. For example, the Florida Marlins became the Miami Marlins and the Anaheim Angels 
became the Los Angeles Angels. More information can be found in online Appendix B.
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IV. Main Empirical Results

Figure 3 displays the results of equation (1) for the full sample of games from 
 1950–2000. The results corroborate the suggestion from Figure 2 that extreme heat 
dissuades baseball fans from attending games. Attendance appears to be highest 
between  75–80°F, and it falls by 16 percent for games taking place at temperatures 
over 95°F relative to games between  70–75°F. Attendance is also significantly lower 
on very cold days, with a  20–25 percent decline on days below 55°F.

Table 2 displays the results of several alternative specifications of equation (1). 
The first column controls only for stadium-by-month and month-by-year fixed 
effects. The second column adds controls for daily precipitation, day of the week, 
and whether the game took place in the afternoon or evening. Finally, column 3 
displays the results of the full specification, with visiting team fixed effects and 
controls for the home team’s performance over its past 100  games. This is the 
same specification displayed in Figure 3. The results are stable across specifica-
tions, though the impacts of high temperature become larger and more precise 
as the additional controls are added in columns 2 and 3. Columns 4 and 5 show 
that the results are robust to extending the time period to 2019 or excluding sell-
out games (games where attendance exceeded 95 percent of capacity). As a final 

Figure 3. Baseball Attendance Falls Sharply at Extremely Hot and Cold Temperatures

Notes: This figure displays the results of equation (1) run on the sample of MLB games from 1950 to 2000. The 
specification is the same as column 3 in Table 2. The outcome variable is  game-level log attendance, and the inde-
pendent variables of interest are indicators for  game-time temperature (the average of hourly temperature read-
ings for the three hours after the start of the game) falling into the temperature bin of interest. The regressions also 
include stadium-by-month fixed effects, visiting team fixed effects, month-by-year fixed effects, and controls for 
daily precipitation, the share of the last 100 games the home team won, indicators for day of the week, and an indi-
cator for whether the game took place in the day or evening. Standard errors are clustered by stadium. Point esti-
mates and 95 percent confidence intervals are shown.
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robustness check, column 6 estimates equation (1), but using indicators for daily 
average temperature (from the Schlenker dataset) falling in each bin as the indepen-
dent variables. These bins are all shifted down by five degrees to account for the fact 
that daily average temperatures are systematically lower than  game-time tempera-
tures. The results are strikingly similar, raising confidence in our main specification.

Table 2—Main Results: Baseball Attendance Falls Sharply at Extremely Hot 
and Cold Temperatures

(1) (2) (3) (4) (5) (6)
< 45 −0.206 −0.186 −0.200 −0.144 −0.244 −0.127

(0.028) (0.032) (0.032) (0.023) (0.034) (0.031)
 45–50 −0.272 −0.252 −0.255 −0.191 −0.269 −0.204

(0.028) (0.027) (0.026) (0.022) (0.024) (0.026)
 50–55 −0.225 −0.210 −0.212 −0.158 −0.226 −0.171

(0.022) (0.022) (0.023) (0.020) (0.021) (0.016)
 55–60 −0.162 −0.149 −0.149 −0.108 −0.158 −0.108

(0.019) (0.020) (0.021) (0.017) (0.022) (0.012)
 60–65 −0.081 −0.070 −0.072 −0.053 −0.077 −0.042

(0.012) (0.014) (0.014) (0.011) (0.015) (0.009)
 65–70 −0.022 −0.019 −0.018 −0.011 −0.022

(0.010) (0.011) (0.010) (0.007) (0.010)
 70–75 0.019

(0.007)
 75–80 0.025 0.022 0.025 0.018 0.027 0.026

(0.008) (0.009) (0.008) (0.006) (0.008) (0.007)
 80–85 0.037 0.019 0.022 0.020 0.025 0.003

(0.012) (0.013) (0.012) (0.009) (0.012) (0.011)
 85–90 0.032 0.002 0.001 0.001 0.002 0.006

(0.020) (0.017) (0.016) (0.012) (0.016) (0.022)
 90–95 −0.001 −0.044 −0.045 −0.035 −0.045 −0.140

(0.024) (0.022) (0.020) (0.016) (0.022) (0.031)
> 95 −0.128 −0.167 −0.160 −0.153 −0.147

(0.048) (0.047) (0.043) (0.032) (0.042)

Fixed effects Yes Yes Yes Yes Yes Yes
Game day controls No Yes Yes Yes Yes Yes
Team controls No No Yes Yes Yes No
Years  Pre-2000  Pre-2000  Pre-2000  1950–2019  Pre-2000  Pre-2000
Exclude sellouts No No No No Yes No
Weather data Hourly Hourly Hourly Hourly Hourly Daily 

avg.
Observations 75,757 75,757 74,004 108,949 70,116 74,014

Notes: This table displays the results of equation (1) run on the sample of MLB games from 
1950 to 2000. The outcome variable is  game-level log attendance, and the independent vari-
ables of interest, in columns   1–5, are indicators for  game-time temperature (the average of 
hourly temperature readings for the three hours after the start of the game) falling into the 
temperature bin of interest. The regression in the first column includes stadium-by-month and 
month-by-year fixed effects. Column 2 adds controls for daily precipitation, indicators for day 
of the week, and an indicator for whether the game took place in the afternoon or evening. 
Column 3 adds visiting team fixed effects and controls for the share of the last 100 games the 
home team won. This is the specification displayed in Figure 3. Columns 4 and 5 display the 
same specification as column 3, except column 4 contains the sample from  1950–2019, and 
column 5 excludes games where attendance was greater than 95 percent of stadium capacity. 
Column 6 replaces the hourly weather station data with daily average temperature data. The 
omitted and highest bin are moved down by five degrees since daily average temperatures are 
cooler on average in our sample. Standard errors in parentheses. All standard errors are clus-
tered by stadium.
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One mechanism for a decline in baseball attendance on unpleasant days could be 
that fans expect the quality of the game itself to decline. If this were true, then part 
of the effect we observe on attendance may not reflect valuation of weather condi-
tions, but rather, valuation of  high-quality game play. In online Appendix Table A2 
we investigate this possibility by taking advantage of the rich data on game play 
in the Retrosheet records. The table displays the results of equation (1), but using 
indicators of the quality of the game as outcome variables. The results document 
that runs, and particularly home runs, become more frequent on particularly hot 
days. This is a well known phenomenon (see, for example, Florio and Shapiro 2016; 
Lindholm 2014; Koch and Panorska 2013). An important physical mechanism is 
that the baseball flies farther on hot days due to lower air density (Bahill, Baldwin, 
and Ramberg 2009). Additionally, strike outs decline.

This could, in principle, bias our results in either direction. If fans prefer games 
with fewer runs and better pitching performances, that could account for a share of 
the decreased attendance for hot games. Our own understanding of this context is 
that the opposite is true—fans seem to enjoy increases in offensive performance. 
It is beyond the scope of this project to formally elicit fans’ optimal game style, 
but recent anecdotal evidence corroborates our belief that the average fan prefers 
more offensive output. In one of its most substantive packages of rule changes in 
many decades, Major League Baseball banned an effective  run-preventing strat-
egy (“the shift”) for the 2023 season. Whether or not its own  first-order goal was 
to favor offenses, the organization explicitly advertised this to fans as having the 
effect of “increased batting average on balls in play” (MLB 2023).20 At the very 
least, it suggests that the MLB seems to believe that fans prefer more offense. In 
short, while we cannot formally rule out that differences in expected game quality 
(from the fans’ perspective) drives any of our result, it would be surprising if the 
increased  run-scoring environment of hot days is the cause of a (positive) share of 
the observed decline in attendance. On the other hand, cold temperatures decrease 
runs and increase strike outs, so altered game play could theoretically cause us 
to overestimate the disutility of cold. In either case, we would expect this to be a 
 second-order effect—the marginal fan plausibly does not consider the correlation 
between weather and run scoring when deciding whether to attend a game.

One limitation of the attendance data is that we are unable to observe any changes 
in the composition of which seats are purchased. One possibility is that some fans 
choose to still attend baseball games even if it’s very hot or cold, but they buy 
seats in more sheltered areas of the stadium. To the extent that these seats are more 
expensive, this behavior reveals that the fans value avoiding the disutility of extreme 
temperatures in a way that we are unable to capture. If this occurs, we will derive an 
underestimate of the disutility. Another consideration is that many baseball fans do 
not stay for the entire duration of the game, and may be particularly likely to leave 
early on very hot or cold days. This is another margin of adjustment on hot or cold 
days that theoretically reveals a disutility of heat or cold but is not captured by our 

20 And rather than offset this with other new  run-preventing rules, the other critical rule change (the  pitch-clock) 
made the game more difficult on pitchers. This change likely was done to speed the game up rather than increase  run 
scoring, but it suggests the package of rule changes was not intended to be  run neutral.
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empirical approach. On the other hand, it could be the case that some baseball fans 
choose not to attend on unpleasant days partially because they anticipate leaving the 
game early due to the temperature. There are scenarios in which some decline in 
willingness to pay could be attributed to this expected loss in baseball consumption. 
We cannot rule this out but expect it to be a  second-order effect; if fans anticipated 
losing significant value via reduced baseball consumption, many would be in a posi-
tion to  re-optimize and instead stay.

Additionally, fans’ experience at baseball games partially depends on other 
fans—it is more fun to attend a game in a full stadium with a lot of fan energy than 
in a half empty, quiet stadium. As a result, it is possible that attendance declines on 
very hot days or very cold days are  self-reinforcing: fans may be further disincen-
tivized to attend if they expect others to not attend. To the extent that this occurs, we 
would overestimate the disutility of unpleasant temperatures by erroneously includ-
ing the expected loss of consumption value due to lower fan energy in the stadium. 
Our empirical strategy does not allow us to rule this out, though again it is plausibly 
a second-order effect, as it would serve to amplify an existing decline.

Finally, and as discussed previously, the leagues differed in how they reported 
attendance numbers during our sample period. Teams in the American League 
reported ticket sales rather than true ‘turnstile’ attendance data throughout the sam-
ple period. Teams in National League, in general, reported turnstile attendance until 
the early 1990s, at which point they transitioned to reporting ticket sales. Effects 
estimated on attendance using turnstile versus ticket sales could differ to the extent 
that unpleasant weather creates additional no shows. This could happen if individ-
uals buy their tickets before an accurate weather forecast is available and decide 
not to go once the unpleasant weather is revealed. One reason to believe that this 
may be a relatively small effect is that once a fan has purchased a ticket, they are 
less likely to be dissuaded by an unpleasant weather forecast because going to the 
game is now (monetarily) costless. Fans who have not purchased a ticket yet are 
plausibly more likely to be swayed by the weather. However, to investigate whether 
measuring attendance by ticket sales is an important source of attenuation bias, in 
online Appendix Figure A3 we limit the sample to teams in the National League, 
prior to 1992, to narrow in on a sample where this attenuation bias should not exist. 
The results are qualitatively unchanged, indicating that this variation in reporting 
standards is not affecting our estimates in an important way.

V. Heterogeneity, Adaptation, and Placebo Tests

In this section, we examine heterogeneity in impacts by stadium type and usual 
climate. First, we leverage the subset of games played in domed or retractable sta-
diums for a placebo test. These games are  climate-controlled, eliminating our pro-
posed mechanism for lower attendance. Any remaining effect is interpretable as the 
impact of temperature on the enjoyability of other outdoor activities. For example, 
if baseball was equally enjoyable regardless of the heat, but visiting a water park 
or beach became much more pleasant, we would still pick up a negative attendance 
effect in the absence of  heat-related disutility at the baseball game. Instead, Figure 4 
demonstrates that baseball attendance is unaffected by outdoor weather in climate 
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controlled environments. This suggests the decline in attendance for outdoor games 
is driven by spectatorship becoming less pleasant, rather than other activities becom-
ing more pleasant. We discuss the impacts of temperature on alternative choices of 
outdoor activities further below.

As mentioned in Section  II, our dataset also spans a variety of climates, from 
the hot and humid home of the Florida (now Miami) Marlins to frigid game days 
in Minneapolis. This variety allows us to examine whether fans’ adaptation to their 
local climate affects their valuation of mild weather. To do so, we split the sample 
into thirds by the stadium’s annual average temperature over its operational period 
(based on weather station readings). We then run our main regression, interacting 
the indicators for daily average temperature falling in the bins of interest flexibly 
with dummies for the home stadium falling in the coolest, hottest, and middle thirds 
of the sample. The results are displayed in online Appendix Figure A4; there is little 
systematic evidence of the effects differing by usual climate. Thus, there is a lack 
of evidence that individuals’ valuation of mild weather as opposed to very warm 
weather attenuates as they adapt and acclimatize to warmer climates.

One potential reason for the lack of differential effect here, which contrasts with 
evidence from the mortality literature (e.g., Barreca et al. 2016), is that we have 
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Figure 4. Placebo Exercise: Attendance Unaffected by Temperature at Covered Stadiums

Notes: This figure displays the results of equation (1) run on the sample of MLB games from 1950 to 2000 that 
took place in stadiums that are either domed or have retractable roofs. The outcome variable is  game-level log atten-
dance, and the independent variables of interest are indicators for  game-time temperature (the average of hourly 
temperature readings for the three hours after the start of the game) falling into the temperature bin of interest. The 
regression also includes stadium-by-month fixed effects, visiting team fixed effects, month-by-year fixed effects, 
and controls for daily precipitation, the share of the last 100 games the home team won, indicators for day of the 
week, and an indicator for whether the game took place in the day or evening. Standard errors are clustered by sta-
dium. Point estimates and 95 percent confidence intervals are shown.
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eliminated domed stadiums from our analysis. Building a dome or retractable roof 
is the primary adaptation investment teams can (and do) make to cope with their 
respective climate. In fact, one way to view our placebo exercises on the sample 
that has made these investments (Figure 4) is in support of existing results in the 
 climate-adaptation literature: cities like Phoenix, AZ and Houston, TX, do not see 
negative attendance responses on hot days precisely because they have paid the fixed 
adaptation costs meant to flatten the response curve. In cases where this investment 
has not been made, there are arguably few tools fans in hot climates could use to 
adjust to hot game days that are unavailable in cool climates on similarly hot days. 
The similarity of the experience of sitting outside for a baseball game in different 
regions of the country, conditional on that day’s weather, is what makes this a useful 
context to study.

Online Appendix Figure A5 goes a step further by running the specification for 
each city independently and plotting the coefficient for games above 90°F.21 This 
is meant to provide a richer understanding of the distribution of effect sizes across 
cities, which could be evidence for or against the generalizability of the finding. To 
summarize, the point estimate on attendance is negative in a majority of cities when 
games are above 90°F. The main result does not appear to be driven by a small num-
ber of extreme responses and many of the coefficients are not statistically distin-
guishable from one another. There are exceptions: the coefficients for Chicago and 
Cincinnati are significantly different, for example. However, these differences do 
not appear systematic. Recall that online Appendix Figure A4 separates these cities 
by usual climate—a dimension along which we might expect heterogeneity—and 
does not show differences in point estimates. This might provide some reassurance 
that any differences observed in online Appendix Figure A5 are at least partially due 
to noise.

VI. Calculating the Disutility of Extreme Temperatures

This section leverages the attendance results above to make inferences about how 
the willingness to pay for baseball games changes on hot and cold days. We then 
formalize under what conditions the willingness to pay for baseball games informs 
us about the disutility of extreme temperature. We focus our theoretical exposition 
on the disutility of heat for simplicity and turn to the impacts of cold temperatures 
at the end of the section.

A. Declining Attendance and the Willingness to Pay for Baseball

To generate an estimate of the change in the willingness to pay to attend a base-
ball game according to the weather, we must make two assumptions, consistent with 
previously mentioned facts about the market for baseball tickets. First, we assume 
that our estimates constitute a change in demand, rather than a joint  quantity-price 
equilibrium adjustment. Equivalently, we assume a perfectly elastic supply curve 

21 Games above 95°F are rare enough to prevent a sufficiently powered analysis when restricting regressions to 
one city at a time.
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at the individual game level; prices do not adjust to demand declines for a given 
game. As mentioned previously, baseball box office ticket prices historically have 
not adjusted on a  game-by-game basis. Only in the  mid-2000s did teams begin using 
dynamic pricing, wherein ticket prices would change based on realized demand for 
respective games. We conservatively estimate the main results on only the  pre-2000 
sample to avoid the possibility of dynamic pricing practices biasing our results.22

In order to map these quantity changes into  price-equivalent changes, we addi-
tionally need an assumption on the local price elasticity of demand. We take 0.7 as 
the central value. Theoretically, one would expect teams to price at unit elasticity. 
MLB organizations are usually local monopolists with extremely low marginal costs 
along the  fan per game margin. However, as discussed in Section  I, Krautmann 
and Berri (2007) summarizes a literature that is puzzled by elasticity estimates that 
consistently fall below unity for professional sports pricing. Taking an average of the 
estimates presented in this canonical reference gives an elasticity of 0.4.23 However, 
this is a dormant literature lacking recent  high-quality studies—once  sub-unit elas-
ticity pricing became a robust empirical finding, the literature moved on to modeling 
why teams would behave this way. So we hesitate to fully update to this low value, 
especially because, as we show below, our main results are inversely related to the 
assumed elasticity, and so this would inflate our monetization. The value of 0.7 rep-
resents a conservative implementation of the robust finding of inelastic pricing. We 
explore the implications of the use of alternative estimates of the price elasticity of 
demand below.

Figure 5 formalizes how these two assumptions allow us to translate our coeffi-
cient estimates into monetary values, focusing on the effects of hot temperatures. 
Note that this is a  log-log plot in accordance with the  log-quantity estimates from 
Section IV. If prices are fixed with respect to weather, it must be the case that the 
estimated quantity change  β , from Table 2, represents a demand shift. Against a hor-
izontal pricing curve any quantity change identifies a shift in demand. To translate 
this leftward shift in demand into an equivalent price change, we ask by how much 
(log) ticket prices would need to fall to reverse the decline in attendance. Formally, 
the (local)  log-price-change-equivalent,   x p   , for any  log-quantity change,  β , takes the 
following form, where   e  p  

d   is the price elasticity of demand:

(2)   x p   =   1 _ 
 e  p  

d 
   β 

Returning to Figure 5, let the equilibrium outcome at pleasant temperatures be 
point A; the equilibrium after a demand decrease from hot temperatures is point B. 
Point C determines the price decrease that would induce an offsetting increase in 
(log-)quantity. The inverse of the price elasticity of demand governs the slope of 

22 Though we note that the bias would be downward, we would observe a smaller quantity effect if prices did in 
fact adjust where we assume they do not.

23 This likewise sits squarely within the range presented in a more recent literature review [−.581,−.275] 
focused specifically on professional (American) football (Diehl, Maxcy and Drayer 2015).
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this curve, and accordingly how much of a price decrease,   x p   , is necessary to get to 
point C.

Holding quantity fixed between points  A  and  C  ensures that for the same num-
ber of consumers the value of attending the game surpasses the outside option. 
Assuming homogenous preferences over temperature, the price decrease generating 
point  C  compensates consumers for their lost surplus due to the high heat.24 If point  
A  was generated by  price-temperature bundle (  p 0  , 70 − 75°)  then point  C  would be 
generated by  (0.77 p 0  , > 95°F ).25  Inflation-adjusted ticket prices over the sample are 
approximately $18, and so this change in the willingness to pay for baseball is about 

24 To see this, consider that the marginal consumer receives 0 surplus at point  A , and the price decreases enough 
to exactly offset the loss from temperature and return her to zero surplus. Assuming homogenous preferences for 
weather, this estimate of the decline in surplus due to temperature for the marginal consumer is representative.

25  0.77 = 1 −   1 _ 
 e  p  

d 
   β = 1 – 0.229 

Figure 5. Elasticity Diagram

Notes: Assume that the supply curve for tickets at the game level is perfectly elastic, i.e., that ticket prices are fixed 
at the game level (but may vary at the team or season level). Then the  β  we estimate as attendance falls from  ln (q)   
→ ln ( q   Hot )   is  demand-driven, as pictured. To compute the  price-increase equivalent, we need to multiply the 

demand change by the slope of the demand curve in the  log-log space, i.e.,    
∂  ln (P) 

 _ ∂  ln (Q) 
   . This is equal to the inverse 

of the price elasticity of demand,    1 _ 
 e  p  

d 
   . Most of the estimates from the sports literature are well below 1. This implies 

we should multiply  β  by at least 1 to obtain the  price-increase equivalent. We use a price elasticity of demand of 

0.7 for our central estimate.
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$4.11 per game. Using alternative elasticity estimates generates a range between 
$2.88 and $7.20 (Figure 6).

Under a more realistic assumption of heterogeneous dislike of high heat, the anal-
ysis is less straightforward. However, as long as the variance of the surplus from 
baseball games is large relative to the variance of the disutility of heat, the setting is 
reasonably approximated by one of homogeneous disutility.26 As the surplus associ-
ated with attending baseball games varies tremendously (think of people’s taste for 
sporting events, their  time-cost of travel, etc.) and human physiology only allows 
for so much variance over temperature related utility, we think this is a reasonable 
assumption. Thus, the $4.11 estimate above approximately represents the average 
change in willingness to pay.

Further, if the supply curve has a  nonzero slope in practice, our empirical quantity 
change estimates understate the true demand shift. In the limit, a perfectly inelastic 
supply curve would produce no quantity change even for a large demand shift. We 

26 This is because the random variable determining attendance—baseball surplus plus heat disutility—will have 
a variance approaching the variance of baseball surplus in the case where this term is much larger. Summing two 
normal random variables, for example, results in a variance that will be very near the larger term if it is indeed 
much larger.

Figure 6. Disutility of Heat Increases with (In)Elasticity

Notes: Estimate of the disutility of heat (>95°F) over the length of a baseball game as it changes with assumed price 
elasticity of demand. Baseline results use an elasticity of 0.7. Krautmann and Berri (2007) surveys a literature docu-
menting that MLB teams price on the inelastic range of demand. If the elasticity is closer to those implied by the lit-
erature, the implied monetary willingness to pay is larger than the $4.11 in the baseline estimate. If the  theoretically 
predicted unit elasticity is correct, the disutility is only $2.88.
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would erroneously conclude there is no preference for the cooler day. This is an 
additional way in which our conclusions err on the conservative side.

B. The Willingness to Pay for Baseball and the Disutility of Extreme Temperatures

The exercise above produces an estimate for the decline in willingness to pay for 
baseball due to extreme temperatures. In this section we describe how we translate 
this to an estimate of the disutility of extreme temperature, again focusing first on 
heat. This conceptual leap is straightforward in the simple case where individuals 
have two possibilities for leisure time: indoor leisure and attending an outdoor base-
ball game. In this case, during hot temperatures, demand for indoor leisure shifts 
out by the exact same amount that demand for baseball games shifts inwards, and 
the magnitude of that shift, as measured by our calculation, clearly represents the 
disutility of heat. In the real world, individuals have a number of outdoor activities 
to choose from, and the “disutility of heat” depends on that choice. For instance, 
running a marathon or going for a bike ride would plausibly involve a higher disut-
ility of heat, while going to the beach may involve a lower disutility of heat. Among 
truly  heat-exposed outdoor activities, baseball may have a relatively low disutility of 
heat, due to its sedentary nature, the fact that many seats are shaded, and due to the 
availability of cold refreshments.

Another, related consideration is the relationship between our estimates, the 
disutility of heat, and the availability of alternative outdoor activities on hot days. 
We calculate the magnitude of the price drop that would reverse the decline in atten-
dance at hot temperatures, which will, in general, be mediated by potential attend-
ees’ best available alternative activities. On a hot day, many individuals are likely 
to substitute from outdoor to indoor activities, but there may also be substitution 
toward other outdoor activities that are less demanding in the heat. This substitution 
across outdoor activities may lessen or exaggerate the decline in attendance at base-
ball games, affecting the size of our disutility estimate.

Here we formalize the impact of available alternatives on our disutility of heat 
estimate. Let   u bb,75  ,  u bb,95    be the monetized utility that a fan gets from baseball ( bb ) 
when it’s  70–75°F and over 95°F, respectively;   u other,75  ,  u other,95    is the utility they get 
from whatever activity is their best available alternative in the heat.

The following two equations describe the relationship between the monetized 
utility of baseball and the alternative activity in mild and hot weather. We focus 
on the individual who would be the marginal fan on the hot day if the price were 
decreased by the $4.11 we estimate would return attendance to its  mild-temperature 
level. This fan can be thought of as the last attendee brought back into the stadium 
with the price drop, and we can infer that they prefer their outside option by exactly 
$4.11.

(3)   u bb,75   −  u other,75   = X 

(4)   u bb,95   −  u other,95   = −4.11 
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The first equation is agnostic regarding the preference ordering between the alter-
native activity (‘other’) that they have chosen instead of baseball on the hot day and 
baseball at mild temperatures: it could be that the fan would have gone to the base-
ball game on a mild day, so that X is a positive number, or that the fan would have 
preferred this alternative activity if it were mild, such that X is a negative number. 
Note that we do not assume here that the best available alternative activity in mild 
temperatures is the same as the best available alternative activity in hot tempera-
tures. Equation (4) holds following our empirical inference that $4.11 is the price 
drop necessary to return this fan to indifference (so they must prefer their other 
activity by exactly $4.11 on hot days).

Subtracting (4) from (3) yields

(5)   ( u bb,75   −  u bb,95  )  +  ( u other,95   −  u other,75  )  = X + 4.11 

and, subsequently,

(6)   ( u bb,75   −  u bb,95  )  = X + 4.11 −  ( u other,95   −  u other,75  )  .

The left-hand side of this equation then describes the decline in the utility of attend-
ing the baseball game in the heat, which is the disutility of the heat parameter that we 
seek to estimate empirically. The $4.11 on the righthand side is our empirical esti-
mate. Therefore, our empirical estimate differs from the disutility of heat, in general, 
by  X −  ( u other,95   −  u other,75  )  . Does this imply an over- or underestimate the disutility 
of heat? Consider four cases. First, suppose the other activity is an indoor activity 
whose enjoyability is unaffected by the weather. Then   u other,75   −  u other,95   = 0 , and 
our estimates differ from the disutility of heat only by X. For a fan that was just on 
the margin of going to the baseball game or going indoors in mild temperatures, 
so that X is 0, our estimates pick up exactly the monetary disamenity of the hotter 
day. To the extent that X is positive, so that the individual strictly prefers baseball to 
going indoors on a mild day, we underestimate the disutility of heat.

A second potential case is a fan that would have gone to the baseball game if it 
were mild (so that X is weakly positive), but due to the heat switched to an activ-
ity that got absolutely more pleasant due to hot temperatures (so that   u other,95   −  
u other,75    is positive, and we overestimate the disutility of heat). An example could 
be a  water-based outdoor activity such as a water park. However, it seems to us that 
there are very few outdoor activities that are absolutely more pleasant at over 95°F 
than they are at mild temperatures. In suggestive support of this, the evidence shown 
in Figure 4 suggests that an indoor baseball game (in a domed stadium or one with 
a retractable roof) does not become less preferable on average compared to outside 
options on hot days. This is evidence that attendance declines on hot days in open 
stadiums are not driven by an increasing appeal of other outdoor activities—if that 
were the case, we would expect attendance declines for indoor stadiums as well. 
Furthermore, most summer baseball games take place in the evening hours, and the 
effects of heat on attendance persist even for these later games. While individuals 
may plausibly substitute toward more preferable outdoor activities, such as swim-
ming in the afternoon hours, this is unlikely to be the individual’s outside option 
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between 7: 00–10:00pm on a weekday. Therefore, we do not expect this second case 
to have an important influence on our estimates.

A third possibility is that a $4.11 decline in ticket prices would bring in a fan who 
would have attended a baseball game on a mild day, but absent any price decline 
would have chosen an alternative activity on a hot day that got less pleasant due to 
the heat, but to a lesser extent than baseball (in other words,   u other,75   −  u other,95   <  
u bb,75   −  u bb,95   ). In this case,   u other,75   −  u other,95    is a positive number, and we under-
estimate the disutility of heat by  X +  u other,75   −  u other,95   . Finally, a fourth possibility 
is a fan that would have strictly preferred a different activity (perhaps a more active 
one such as hiking or jogging) on a mild day to baseball, such that X is a negative 
number, but the disutility of heat for the alternative activity is so large that the $4.11 
decline in ticket prices induces them to switch to baseball on a hot day.27 In this 
case, it’s theoretically ambiguous whether  X −  ( u other,95   −  u other,75  )   is a positive or 
negative number and therefore whether we underestimate or overestimate the disut-
ility of heat for baseball. However, if the strength of the individual’s preference for 
the alternative activity were larger than the disutility of heat of that activity, it’s 
unlikely the individual would be close enough to the margin of going to the baseball 
game on a hot day to be induced to switch by a $4.11 price drop. To see this, note 
that the decline in the level of attendance on a hot day means that there are enough 
people in the first three cases to induce to switch back to baseball with a price drop 
less than or equal to the disutility of heat without needing to compensate someone 
in this fourth category more than the disutility of heat to attend the baseball game.

The relationship between the empirical estimate we derive from our exercise and 
the true “disutility of heat” in this context will depend on what combination of these 
four cases is closest to the margin of attending or not attending a baseball game on 
a hot day. However, for the range of most common alternative activities at extreme 
temperatures, our empirical estimate is likely lower than the true disutility of heat. 
The amount by which we underestimate the disutility of heat will depend on the 
quantitative values for these terms, which are difficult to precisely ascertain. One 
possibility is that both terms are small, or close to 0. X is close to zero, as mentioned 
previously, if individuals are relatively similar in their disutility of heat, so that the 
marginal fan on a mild day is the same as the marginal fan on a hot day. It also seems 
plausible that the last individual brought back to the game with a $4.11 price decline 
had switched to an activity with a substantially smaller, or even zero, disutility of 
heat (such as simply going inside). If this is close to the  real-world case, then our 
estimate aligns closely with the true disutility of heat.

We’ve focused thus far on the change in willingness to pay for baseball on a hot 
day despite the fact that in Section  IV we estimated even larger impacts of cold 
days on attendance. Following the same procedure, we would estimate a willing-
ness to pay for warmer temperatures in the range of $5.17–$6.55. One reason for 
the relatively large disutility of cold estimate in this setting could be that baseball 

27 In the first case we discuss, we treat indoor activities as the outside option, assuming that the enjoyability of 
being indoors does not depend on the outdoor temperature. However, this is unlikely to be the case for individuals 
without air conditioning. It’s even possible that these individuals will fall into this fourth category: they would have 
stayed inside on mild days but prefer a baseball game to the indoors on very hot days.
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attendance is a sedentary activity, so attendees may feel cold in a temperature range 
where they may feel more comfortable participating in a more active outdoor activ-
ity. For example Greenstone, Hayat, and Galperin (2019) finds that the optimal tem-
perature to run a marathon is in the 40’s (°F), which is a temperature range where 
we estimate very large negative effects on baseball attendance.

VII. SeatGeek Ticket Prices and the Willingness to Pay for Baseball

In this section we exploit secondary market ticket price data directly for a much 
smaller sample of games to estimate the change in the willingness to pay for base-
ball under fewer structural assumptions. While box office ticket prices have histor-
ically been fixed with respect to variation in  game-level characteristics, for the last 
15+ years it has been possible to purchase tickets on online secondary markets such 
as StubHub, Ticketmaster, and SeatGeek. On these secondary markets individuals 
update prices frequently and appear to optimize at the game level rather than the sea-
son level (Sweeting 2012). The existence of secondary markets, and generally more 
ways to buy and sell tickets with flexible prices, means tickets are allocated more 
efficiently. This amounts to making the market look more like one with perfectly 
inelastic supply—demand changes will then be reflected in price changes. Therefore, 
this setting is one where it makes more sense to translate a change in ticket prices 
directly into a measure of the change in willingness to pay for baseball.28

During the 2021 MLB season, from May to October, we scraped daily price data 
of listings on SeatGeek.com for each MLB game.29 The data contain information on 
average, median, minimum, and maximum prices for ticket offerings on SeatGeek 
for each game, as well as the overall count of listings. We pulled price information for 
listings left available on game day for each game as well as for each day in the prior 
week. According to the Sports Business Journal, SeatGeek held 19.5 percent of the 
secondary market for Major League Baseball tickets in 2021 (McCormick 2022). 
As mentioned in Section I, previous evidence finds that tickets on different websites 
tend to be comparable in price and move together (Sweeting 2012).

The SeatGeek price data can be similarly merged with  game-time temperature 
information using weather station data from the NOAA ISD.30 For precipitation, 
we use the PRISM daily climate data, which is the same underlying precipitation 
data source as we used for the attendance data, but without the corrections to cre-
ate a balanced panel undertaken by Schlenker (the corrected dataset as of the time 
of this writing runs only through 2019).31 Online Appendix Table  A3 displays 
summary statistics of the ticket prices. The ticket prices have a strong rightward 
skew: the average price is around $445, while the average median price is only $80. 
Accordingly, we drop the top 1 percent of prices in our main analysis to reduce 

28 To our knowledge, only Paul and Weinbach (2013) previously examined the impacts of weather on baseball 
ticket prices, and we are the first to control for  place-specific seasonality to separate out the causal effect.

29 These sites do not make the necessary historical data available to perform this analysis for the entire period 
the secondary market has been active.

30 We use the same procedure here to ensure that we have a balanced panel of weather stations: we remove 
stations that were missing more than 5 percent of observations for the  3-hour average temperature during 2021.

31 To conduct the merge, we interpolated the weather readings from the surrounding gridpoints in the weather data.

http://SeatGeek.com
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the influence of outliers. A small number of games have very small numbers of 
reported listings, perhaps due to API error. We drop the lowest 1 percent of listings 
in our main analysis, but the results are invariant to retaining those observations 
or dropping larger percentages. Ticket prices decrease steadily in the days leading 
up to game day, while the overall number of listings declines. This matches with 
evidence from Sweeting (2012) that prices fall over time, as the opportunity cost of 
not holding the ticket in the next period declines for the seller.32 Online Appendix 
Figure A6 shows how median prices and counts of listings evolved throughout the 
2021 season. Prices tend to be higher at the beginning and end of the season, and on 
weekends. The count of listings increased throughout the season.

For our primary analysis, we restrict the sample to only game day listing prices 
so that each game contributes only one observation to the dataset and so that prices 
contain as much information about responses to game day weather as possible. 
Given that tickets are “perishable,” most of the activity on the secondary market will 
have completed by this time, and the price will be a function of remaining inventory 
given the past realizations of demand. Weather forecasts will have been available for 
several days, presumably growing more precise as game day approaches.

To investigate the impacts of game day weather on prices, we run a slightly altered 
version of equation (1):

(7)   y isdmv   =  ∑ 
j
  

 

     β j   ⋅ Exposur e sdm   ( T j  )  +  θ sm   + η preci p sdm   + ν  X isdmv   +  ϕ v   +  ϵ isdmv   

The fixed effects specification differs for this exercise due to the  one-year sample 
period.   y isdmv    is logged average listing price for game  i  at stadium  s  on date  d  in 
month  m  against visiting team  v .   β j    is the coefficient of interest and gives the effect 
of  game-time temperature falling in bin  j  on prices, relative to the reference bin of 
 70–75°F. For this data sample, we continue to use  five-degree bins, but the highest 
bin is >90°F instead of >95°F. Due to the proliferation of domed stadiums and 
stadiums with retractable roofs in cities with warm climates in recent years, along 
with the limited sample period, there are too few observations above 95°F to use to 
estimate the effect separately.   θ sm    are stadium by month of year fixed effects.   X isdmv    
are controls for observable characteristics of a particular game: day of week fixed 
effects, and whether the game was an afternoon or evening game. Finally   ϕ v    are 
fixed effects for the visiting team. Standard errors are clustered at the stadium level. 
In this one year period, there were only 22 stadiums in the sample, raising concerns 
that there are too few clusters to accurately estimate clustered standard errors. To 
address this concern, we calculate wild cluster bootstrapped confidence intervals for 
the estimates (Cameron, Gelbach, and Miller 2008). We implement the calculations 
with 999 replications using Stata’s boottest module (Roodman 2021).

Figure 7, panel A displays the results of equation (7) on the full 2021 season sam-
ple. The results show declines in ticket prices at warmer and colder temperatures, 
with average ticket prices falling by about 8.4 percent on days over 90°F. Given the 

32 As the paper mentions, theoretically consumers should rationally wait to buy tickets later, when ticket prices are 
lower, given this phenomenon. But customers might have costs of waiting, partially due to the investment required to 
attend a game, that could prevent this behavior from smoothing out the decline in prices as a game approaches.
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Figure 7. SeatGeek Ticket Prices Fall at Hot and Cold Temperatures

Notes: Panel A displays the results of equation (7), run on the sample of  game-day SeatGeek listing prices from 
 May–October 2021. The blue line shows the results of  game-level log average listing price regressed on indica-
tors for  game-time temperature falling into the temperature bin of interest. The green line shows the results of 
 game-level log median prices regressed on the same independent variables. The red line shows the results of a 
regression of logged average prices on a quadratic in  game-time temperature, while the purple line shows estimates 
from a regression of logged average prices on indicators for daily average temperature on game day falling into the 
bin of interest. The regressions also include stadium-by-month fixed effects, away team fixed effects, controls for 
daily precipitation, indicators for day of the week, and indicators for whether the game took place during the day or 
evening. Standard errors are clustered by stadium and, except for the quadratic regression, calculated using the wild 
cluster bootstrap procedure from Cameron, Gelbach, and Miller (2008). Point estimates and 95 percent confidence 
intervals are shown. Panel B displays the results of the same regression as Panel A in the blue line, but the estimates 
have been multiplied by $18 to convert to a monetized disutility of each temperature bin. In the red line we display 
the monetized disutilities implied by a regression of log attendance on temperature similar to equation (1). For this 
regression, we restrict to only the stadiums seen in the 2021 SeatGeek data and combine the bins for temperatures 
over 90°F and below 50°F to match the SeatGeek regression. We then convert to a monetized utility by multiplying 
by the inverse price elasticity of demand and the estimated average ticket price of $18.
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noise in these estimates, in panel A of Figure 7, we display the results of several 
alternative specifications, additionally regressing log average price on a quadratic in 
game-time temperature and binned daily average temperature from PRISM, as well 
as estimating the impacts of binned  game-time temperature on logged median price. 
Each of these specifications broadly shows the same  U-shaped pattern.33

Using the same prevailing average ticket prices as with the attendance exercise, 
an 8.4 percent decline in ticket prices amounts to a $1.51 estimate of willingness 
to pay for mild weather rather than weather >90°F. This is a smaller point estimate 
than derived from the attendance data but is not directly comparable given differ-
ences in sample and regression specification necessitated by the 2021 sample (for 
example, the upper most bin is above 90°F because of the small number of observa-
tions above 95°F).

Figure 7, panel B documents that when a comparable regression is run on the 
attendance data, quantitatively similar results are obtained. Two adjustments need 
to be made to harmonize the analyses. First, we create a Retrosheet data  subsample 
that restricts to only the stadiums that are observed in the 2021 SeatGeek data.34 
Second, we combine the bins above 90°F and under 50°F in our attendance exercise 
to match the SeatGeek exercise. The results of this exercise are overlaid with the 
results of the exercise using the SeatGeek data in Figure 7, panel B. The  y-axis here 
is a common monetized disutility implied by the results for each temperature bin.35 
As might be expected, combining the >90°F bins in the attendance analysis results 
in a smaller estimated effect on attendance, but the results show a similar quantita-
tive pattern emerging from both exercises. And in fact, all of the confidence intervals 
for each coefficient in Figure 7, panel B overlap.

A. Robustness

Given that we are using  game-level summary statistics of listing prices as our out-
come variable, rather than individual  seat-level data, one concern is that changing 
average ticket prices may partially reflect changing composition of seat offerings 
on SeatGeek. One example of this concern: if many fans that are just on the margin 
of purchasing or not purchasing a ticket to attend a game are likely to buy cheap, 
 bleacher-type seats on SeatGeek, and these marginal fans are especially likely to 
be dissuaded by high game day temperatures, then a large negative impact on aver-
age prices of listings on SeatGeek could reflect these “nosebleed” seats being left 
unsold, as opposed to especially large changes in demand for baseball tickets. In 
this example, the underlying mechanism for the effect on prices is still reduced 
demand, but the magnitude of the effect does not necessarily correspond to the 

33 The  U-shape relationship is shifted left for daily average temperature due to the fact that daily average tem-
perature is usually lower than  game-time temperature.

34 These stadiums are: Truist Park, Oriole Park at Camden Yards, Fenway Park, Wrigley Field, Guaranteed Rate 
Field, the Great American Ball Park, Progressive Field, Coors Field, Comerica Park, Kauffman Stadium, Angel 
Stadium of Anaheim, Dodger Stadium, Target Field, Citi Field, Yankee Stadium, RingCentral Coliseum, Citizens 
Bank Park, PNC Park, Petco Park, Oracle Park, Busch Stadium, and Nationals Park.

35 For the attendance estimates, we multiply each coefficient by the inverse price elasticity of demand and then 
by the estimated average ticket price of $18, as described in Section VIA. For the SeatGeek exercise, we multiply 
the estimates of the percent change in price by the average ticket price of $18 to back out a monetized disutility.
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quantity of potential attendees dissuaded by heat. Sweeting (2012) shows evidence 
that the composition of available seats on StubHub does not change as game day 
approaches, reducing this concern.36

To investigate the potential contribution of these composition effects directly in 
our data, in Table 3, we examine the impacts of the weather on alternative summary 
statistics of listing prices. Column  1 displays the same specification as the blue 
line in Figure 7, with log average price as the outcome variable. Column 2 looks 
at the impact of weather on the minimum price among the SeatGeek offerings on 

36 Sweeting (2012) also tests the hypothesis that late buyers are more price sensitive by reasoning that sellers 
of more expensive tickets would have to slash their prices more dramatically than holders of cheap tickets to attract 
buyers in the days before a game. However, he finds no evidence of this, suggesting that the composition of buyers 
does not change leading up to a game.

Table 3—Main Results: Ticket Prices

Avg. price 
(1)

Min price 
(2)

Max price 
(3)

Median price 
(4)

Listings 
(5)

No sellouts 
(6)

< 50 −0.420 −0.585 0.023 −0.472 0.531 −0.428
(0.03) (0.01) (0.95) (0.00) (0.08) (0.07)

[−0.690, −0.065] [−0.873, −0.262] [−0.802, 0.748] [−0.692, −0.253] [−0.072, 1.109] [−0.704, 0.058]
 50–55 −0.279 −0.260 −0.319 −0.208 0.136 −0.294

(0.00) (0.08) (0.16) (0.03) (0.44) (0.01)
[−0.453, −0.100] [−0.499, 0.025] [−0.705, 0.190] [−0.379, −0.022] [−0.226, 0.478] [−0.537, −0.075]

 55–60 0.016 0.012 0.047 −0.015 0.031 0.045
(0.80) (0.84) (0.69) (0.78) (0.72) (0.38)

[−0.102, 0.134] [−0.090, 0.117] [−0.241, 0.292] [−0.121, 0.109] [−0.150, 0.226] [−0.066, 0.154]
 60–65 0.024 0.049 −0.033 0.018 −0.037 0.011

(0.54) (0.39) (0.62) (0.66) (0.49) (0.74)
[−0.059, 0.105] [−0.074, 0.163] [−0.172, 0.102] [−0.074, 0.108] [−0.140, 0.070] [−0.063, 0.078]

 65–70 0.039 0.042 0.025 0.048 −0.020 0.043
(0.25) (0.25) (0.78) (0.20) (0.66) (0.25)

[−0.031, 0.107] [−0.035, 0.110] [−0.169, 0.212] [−0.029, 0.119] [−0.116, 0.081] [−0.035, 0.117]
 75–80 0.029 −0.017 0.196 −0.020 0.092 0.018

(0.17) (0.57) (0.00) (0.59) (0.04) (0.41)
[−0.014, 0.069] [−0.084, 0.042] [0.108, 0.292] [−0.089, 0.046] [0.003, 0.179] [−0.028, 0.061]

 80–85 0.036 0.042 0.150 0.028 −0.042 0.012
(0.27) (0.30) (0.10) (0.54) (0.68) (0.74)

[−0.033, 0.103] [−0.040, 0.123] [−0.033, 0.336] [−0.056, 0.123] [−0.248, 0.173] [−0.054, 0.084]
 85–90 −0.035 −0.031 −0.058 −0.064 0.044 −0.051

(0.52) (0.55) (0.58) (0.28) (0.62) (0.33)
[−0.144, 0.076] [−0.133, 0.072] [−0.269, 0.173] [−0.184, 0.052] [−0.145, 0.233] [−0.155, 0.056]

> 90 −0.084 −0.098 0.140 −0.218 0.077 −0.110
(0.30) (0.28) (0.50) (0.01) (0.75) (0.14)

[−0.215, 0.191] [−0.225, 0.127] [−0.348, 0.701] [−0.404, −0.059] [−0.503, 0.541] [−0.233, 0.102]

Observations 1,457 1,457 1,457 1,457 1,457 1,311

Notes: This table displays the results of equation (7), run on the sample of  game-day SeatGeek listing prices from 
 May–October 2021. The outcome variables are  game-day log average listing price (columns 1 and 6), log minimum 
price (column 2), log maximum price (column 3), log median price (column 4), and logged listings count (column 5). 
The independent variables of interest are indicators for  game-time temperature (the average of hourly temperature 
readings for the three hours after the start of the game) falling into the temperature bin of interest. The regressions also 
include stadium by month fixed effects, away team fixed effects, and controls for daily precipitation, indicators for day 
of the week, and indicators for whether the game took place during the day or evening. Standard errors are clustered 
by stadium and calculated using the wild cluster bootstrap procedure from Cameron, Gelbach, and Miller (2008). The 
table shows the coefficient, p-value, and 95 percent confidence interval for each estimate.
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game day. If cheap tickets are more likely to go  unpurchased on hot days relative 
to average or expensive tickets, this could drive down minimum prices to a greater 
degree than average prices. However, the effects in this specification are not sta-
tistically distinguishable and are qualitatively similar. Model 3 uses the maximum 
ticket price as the outcome variable: the price of the most expensive ticket offering 
seems little affected by temperature, but the coefficients are noisy. Column 4 uses 
the median price as the outcome variable, with similar albeit larger results to col-
umn 1. Finally, in column 5 we examine the impacts of temperature on the number 
of listings remaining on SeatGeek on game day. Unsold listings increase on very hot 
days and cold days, although the coefficients are very noisy. Any increase in listings 
may reflect a combination of more fans looking to sell their tickets and fewer fans 
willing to buy when the game day is forecasted to be very hot or cold.

The interpretation that both decreases in demand and increases in supply can be 
thought of as reductions in desire to attend baseball games may be complicated by 
the presence of professional ticket brokers on these secondary markets. Professional 
brokers may have an incentive to lower their price in anticipation of lower demand 
(willingness to pay) once very high temperatures make their way into the forecast, 
but the mechanism is no longer as direct since the brokers are not deciding whether 
to attend the game themselves. It is presumably the case that brokers play a bigger 
role in the market for tickets in  high-demand games, so one way to gain suggestive 
evidence on the role of brokers is remove especially  high-demand games from the 
sample. In column 6 we display the same specification from column 1, except we 
exclude games that had attendance over 95 percent of the stadium’s capacity accord-
ing to the Retrosheet data. The effects are very similar.

A final concern with using the 2021 SeatGeek data is that the  Covid-19 pan-
demic had a major impact on operations for the season. This could impact prices 
on SeatGeek: many stadiums capped attendance at some percent of capacity, poten-
tially restricting supply, and fans may have still been reluctant to attend crowded 
events, limiting demand. To the extent that  Covid-related trends in attendance and 
ticket purchasing behavior interact with game day weather, this could create an 
external validity concern. For example, if games are regularly sold out to the limited 
capacity, where they would not have been sold out with full capacity, this could limit 
our ability to observe the impacts of heat on ticket prices, biasing our effects toward 
zero. On the other hand, if fans are more “on the fence” about attending baseball 
games due to Covid, they may be more sensitive to weather impacts, causing us to 
estimate larger effects than in a typical season. Ultimately, this is an external validity 
issue, although the fact that we estimate similar effects using 2021 ticket prices as 
we get for  1950–2000 baseball attendance ameliorates this concern.

VIII. Hourly Disutility of Extreme Temperature and Aggregate Welfare Losses

In Section VIA we discussed how our results translate into an estimate of the disut-
ility of extreme temperature that a fan experiences at a baseball game. It is straight-
forward to convert the  game-level estimates to  per hour estimates, recognizing that 
the typical baseball game is about 161 minutes. The $4.11  per game monetized cost 
for games played when the temperature is over 95°F then corresponds to $1.53 of 
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utility loss per hour, or $1.97 for games when the temperature is below 45°F. These 
are our central estimates of the disutility of extreme temperatures: individuals would 
pay about $1.53 to avoid an hour spent outside in temperatures over 95°F or $1.97 
to avoid an hour outside below 45°F. Recall that these values came from applying a 
price elasticity of demand of 0.7. Leaning fully on the empirical studies and applying 
a value of 0.4, we would estimate a higher $2.68 ($3.45) per hour for temperatures 
over 95°F (under 45°F); the most conservative value of 1.0 produces a lower $1.07 per 
hour cost for over 95°F, or $1.38 for under 45°F. It is worth noting that in converting 
the utility costs of a  three-hour baseball game to a  per hour cost, we assume that these 
utility costs scale linearly with time spent outdoors. If instead, the marginal costs are 
convex, this would cause our  dollar per hour estimate to be an overstatement—one 
hour outdoors would be less unpleasant than the average of the three hours outdoors 
we observe. The opposite is true if marginal costs are concave.37

A natural extension of this exercise is to estimate the damages from climate change 
implied through this channel of disutility of exposure to extreme temperature. First, 
setting aside the change in the distribution of cold days and only considering addi-
tional exposure to hot days, note that we estimated an hourly disutility of > 95°F 
temperatures. In our sample, these temperatures tend to occur on days with an aver-
age temperature between  85–90°F. We calculate that the average American will be 
exposed to about 29 additional days in this temperature range by  2080–2090 under a 
 business-as-usual ( SSP5–8.5) warming scenario, compared with  1980–2000, or 17 
additional days under a more moderate warming scenario ( SSP2–4.5).38 Estimates 
from the American Time Use Survey suggest that the average American spends 
about 30 minutes outside on these hot days, which implies utility loss per person per 
hot day is approximately $0.77. Therefore, these additional days of exposure will 
lead to an additional annual welfare loss due to heat of $2.31 billion ($1.34 billion) 
by  2080–2090 under  SSP5–8.5 ( SSP2–4.5), according to our estimates.39,40 On the 

37 While we typically think of costs as convex, decreasing marginal costs could arise if there are important fixed 
costs associated with experiencing unpleasant temperatures. For example, a bicycle commute on a very hot day 
requires two instances of becoming very sweaty (to and from work), relative to this happening only once if that time 
were spent outside in one continuous stretch.

38 To derive this estimate, we calculate the  population-weighted average number of days that produce tempera-
tures >95°F under historical weather distributions. For this calculation, we take the average count of days in each 
gridpoint (using Wolfram Schlenker’s version of the PRISM data) with daily average temperatures that tend to 
produce >95°F temperatures ( 85–89.5°F days) from  1980–2000. We then multiply that by the local population in 
2020 using gridded population data from the Socioeconomic Data and Applications Center (SEDAC). Finally, we 
divide by the total population to get an estimated count of average days of exposure per person. We then compare 
that to the projected count of the same type of days in  2080–2090 that the average American will be exposed to, 
using projected population data for 2090. For the projected weather data, we use the average of the 35 global climate 
models (GCM’s) from the Coupled Model Intercomparison Model 6 (CMIP6). The data are downloaded from the 
NASA Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP).

39 These 30 minutes do not include outdoor labor time, as the American Time Use Survey does not separate out 
whether the respondent’s workplace is outside or inside. However, we can follow Graff Zivin and Neidell (2014) in 
defining “high risk" industries where a large proportion of work is likely to take place exposed to outdoor tempera-
ture: agriculture; forestry, fishing, and hunting; mining; construction; manufacturing; and transportation and utili-
ties industries. If we include time spent at work in these industries as time spent outdoors, we get that the average 
American spends 61 minutes outdoors on hot days, so that damages from the additional 29 hot days will instead be 
$4.51B under a business as usual scenario.

40 We ignore the additional fact that some individuals  re-optimize to spend less time outdoors on very hot days, 
which would constitute a utility loss based on their revealed preferences on mild days. However, the envelope theo-
rem implies that any additional losses coming through a  re-optimization channel will be second order.
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one hand, these damages are small in the context of overall estimated damages from 
climate change. These are projected to be on the order of  5–20  percent of GDP 
annually in the United States by the end of this century in the  business-as-usual 
scenario we study, or about $1–$5 trillion.41 The estimates in this paper would not 
imply an important revision to optimal emissions trajectories or the overall cost of 
climate change. On the other hand, since 1980, the United States has experienced 
an average of only eight “Billion Dollar Weather Disasters” per year (NOAA 2023). 
The annual costs of just the unpleasantness of 30 minutes per day in hot weather 
spread across the population would be large enough to be counted among this small 
class of extreme weather events.

A full accounting of the costs and benefits of climate change would incorporate 
the fact that fewer very cold days will occur, which will have benefits for outdoor 
recreation (see e.g., Chan and Wichman 2020). If we incorporate the projected loss 
in exposure to cold days, the implied benefit using our estimates would entirely elim-
inate the aggregate costs of climate change via the mechanism of exposure disut-
ility. We interpret this exercise to provide suggestive evidence that climate change 
will improve welfare for time spent outdoors in sedentary activities. However, more 
research is needed to understand the net effects of climate change on welfare from 
outdoor activities overall.

There are several caveats with aggregating our  per hour utility cost estimates to 
an estimate of  population-level utility loss on days with extreme temperatures in 
this way. First, it is likely the case that individuals optimize on hot and cold days by 
 rearranging their schedules to spend time outside during milder times of the day. For 
example, an individual might choose to go for a run in the early morning instead of 
during the afternoon on a hot day and thus avoid some of the utility costs of heat. 
This margin of adjustment (which is not available to baseball spectators, who face 
a set schedule of baseball games) would mitigate the aggregate welfare losses we 
estimate. Second, any nonlinearity in the marginal costs of exposure to extreme 
temperatures will also affect our estimate of aggregate welfare loss. In light of these 
complications, our estimates of aggregate costs should be taken as suggestive pre-
dictions of the order of magnitude of these effects rather than precise forecasts.

IX. Conclusion

In this paper, we establish a new setting for examining the impacts of extreme 
temperatures on individual utility and leisure time. We first estimate the causal 
impacts of weather on MLB attendance, showing that preferences for engaging in 
this passive, outdoor leisure activity significantly decline at very hot and very cold 
temperatures. Next, we leverage these  well-identified estimates to directly esti-
mate fans’ valuation of mild  game day weather using two methods. First, given 
fixed pricing of baseball tickets and findings from the literature that pricing is in 

41 See, for example, Howard and Sterner (2017) or Barrage and Nordhaus (2024). These are 2022 dollars, based 
on a simplifying assumption of zero economic growth over this period. To the extent that the economy is much 
larger by the end of century the value of losses would be higher (but presumably so would the willingness to pay 
to avoid heat).
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the inelastic region of demand, we use the attendance estimates to back out an 
equivalent price change that would induce the same impact on quantity of tickets 
demanded, finding that fans would pay $4.11 to replace a  game-time temperature 
over 95°F with one between 70°F and 75°F. Second, we use secondary ticket pricing 
data from SeatGeek to directly estimate the impacts of heat on ticket prices, finding 
effects of a similar magnitude.

The results speak to an understudied implication of climate change. Heat waves 
are known from an established literature to pose significant risks to human health, 
productivity, and economic output, but they also cause a widespread increase in 
disutility due to the discomfort of hot weather. The estimates derived from this paper 
suggest that these effects are not large enough to alter our understanding of the costs 
of climate change, but are still economically meaningful.
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